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Abstract 
 
In the original Equivalent Crystal Theory, each atomic site in the real crystal is assigned an 
equivalent lattice constant, in general different from the ground state one. This parameter 
corresponds to a local compression or expansion of the lattice. The basic method considers these 
volumetric transformations and, in addition, introduces the possibility that the reference lattice is 
anisotropically distorted. These distortions however, were introduced ad-hoc. In this work, we 
generalize the original Equivalent Crystal Theory by systematically introducing site-dependent 
directional distortions of the lattice, whose corresponding distortions account for the dependence 
of the energy on anisotropic local density variations. This is done in the spirit of the original 
framework, but including a gradient term in the density. This approach is introduced to correct a 
deficiency in the original Equivalent Crystal Theory and other semiempirical methods in 
quantitatively obtaining the correct ratios of the surface energies of low index planes of cubic 
metals–(100), (110), (111). We develop here the basic framework, and apply it to the calculation 
of Fe (110) and Fe (111) surface energy formation. The results, compared with first principles 
calculations, show an improvement over previous semiempirical approaches. 
 
 

Introduction 
 
Equivalent Crystal Theory (ECT) is a method to calculate energies of atomic conglomerates. It 
has been very successful in predicting formation energies of bulk defects. Bozzolo, Ferrante and 
Smith (BFS) have extended it to multicomponent metals, and have successfully used it to predict 
the ground state structures and surface properties of various alloys. 
 
The basic idea of the original Equivalent Crystal Theory (OECT) rests on the fact that the total 
ground state energy of a quantum system is a functional of the electron density [1]. Therefore, 
OECT requires that, at the atomic site under consideration, the density be the same for both the 
real lattice and the equivalent, defect-free lattice. That provides a value for the equivalent lattice 
parameter aeq at that site. The energy contribution from that site is obtained by using the 
Universal Binding Energy Relation (UBER) curve. The UBER provides binding energy as a 



NASA/TM—2004-212970 2

function of average atomic separation (or in this case, lattice parameter). In this work, we 
generalize OECT without losing its original flavor, that is, by keeping the assumption that the 
electron density must remain the same for both the real and the equivalent crystal. However, here 
we extend it to include non-local effects by requiring that both, the real and equivalent crystal 
densities be the same not only at the center of the atomic site into consideration, but also in a 
neighborhood around that point. Concretely, we will impose that the density at an atomic site and 
its gradient be the same for the real and the equivalent crystal. These density variations in the 
neighborhood can be estimated from recent ab initio calculation for surface binding curves for 
Fe. The reference crystal now includes both isotropic distortions and separation of the solid in 
two pieces normal to a given surface plane. 
 
In this new framework, the reference crystal at an atomic site will be assigned two (instead of 
one) parameters: the equivalent lattice parameter and the relative separation, γ, between two 
hypothetical surfaces. The direction of the separation, and the separation itself, do not have to be 
the same for all the real atoms in the crystal. We will call that, potentially variable, direction z. 
The two parameters are obtained from two requirements, which are: the site density and its 
gradient at each location are assumed the same for both the real and the equivalent crystal. 
 
 

Development of the Ideas 
 
In this modified version of ECT (MECT), the reference crystal is not just a perfect lattice with  
a ≠ a0, but, in addition, it incorporates a pair of surface-terminated bulks with a ≠ a0, separated by 
a distance γd, where d is the interplanar distance normal to a particular plane. 
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Figure 1 shows the reference crystal in a generic configuration. Clearly, as opposed to the 
original ECT (OECT), not all atoms in this reference crystal contribute the same amount to the 
total energy. We will consider the local energy contribution coming from a reference atom in the 
(quasi) surface (QS), shown in red in the figure. The quasi-surface becomes a bona fide surface 
in the limit γ → + ∞. An atom in QS (AQS) contribution to the total energy is now a function of 
both the lattice parameter a, and the relative distance γ, between the two QS. This differs in form 
from OECT which expands the energy in a series containing a volume term, plus two-, three-, 
and four-body terms. In this formulation, the next term beyond the volume’s would be the 
gradient of the density, and the next beyond that would be the curvature. 
 
In OECT, a was found by requiring that the total electron density at the center of a given atom be 
the same for both the real defect crystal and the reference crystal. That condition will remain 
valid in MECT, but we will impose a second constraint. The motivation for the additional 
equation is to also look at the density close to the center of the given atom, not only at the center. 
We will impose that the real and reference densities must be equal in that small (but not zero) 
region. As in OECT, we take the densities from each atom to be given by 

∑ −−−=
R

rRp
erRr αρ )( , with standard notation. Consider the atom for which we want to 

calculate the energy contribution, to be located at the origin. We expand rR − taking into 

account that r << R: 
 
 0( ) (0) ( ) rr r r =ρ = ρ + ⋅ ∇ρ +  (1) 
 
Then, expanding the power and the exponential, 
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From this expression, we will impose: 
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where en̂ and rn̂ are fixed directions in the respective spaces. 
 
Both right-hand sides are explicit functions of γ and a and will be obtained by solving (3) and 
(4). 
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Generalization of UBER 
 
The most critical issue to stress in MECT is the fact that, as opposed to what happens in OECT, 
not all atoms in the reference crystal are equivalent and therefore contribute a different amount to 
the total energy. 
 
Let us assign the energy contribution from each atom to the total energy 
 
 [ ])1(1)( −−−−+= n

AQSBAQSn eEEEE λ  (5) 
 
where all atoms in the same plane n will be weighted equally, but atoms in different layers will 
have a different contribution. Here EB is the contribution from bulk (which is given by the OECT 
UBER), EAQS is the (still unknown) contribution from AQS, λ ≈ 1/M (M is the number of layers 
in which atoms are substantially different from bulk), finally n is the layer’s depth (n = 1 
corresponds to the top layer, our QS). Here we have assumed an exponential form for the 
contribution to the energy as a function of depth. Hung et al [2] have shown that the electron 
density in slabs of increasing widths rapidly approaches its bulk value . 
 
The total energy Etot can be calculated as: 
 

 ∑∑
+∞

=

−−
+∞

=

⋅−⋅+⋅⋅==
1

)1(

1
)(

n

n
BAQSABDA

n
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Where NA is the number of atoms in-plane, ND is the number of layers (although the sum goes to 
infinity here, in practice ND is very large but not infinite). 
 
Calling N = NA.ND, the total number of atoms, we obtain: 
 

 λ−−
−⋅

+⋅=
e

EEN
ENE BAQSA
BTot 1

)(
 (7) 

 
Hung et al [3] have done a first-principles density functional theory calculation where they 
obtained the energy as a function of separation of two surface-terminated bulks. Call that energy 
curve E(γd0), where d0 = ca0 is the equilibrium interplanar distance, a0 is the equilibrium lattice 
parameter, and c is a geometric factor that depends on the orientation and the crystal structure. 
Ferrante and Smith [4] defined the adhesive energy as the energy two surfaces have referred to 
the energy they have when infinitely separated. Since reference [1] reports energy per unit area 
(A), we have, for one QS: 
 

 
A
EEEad

)()()( +∞−≡ γγ  (8) 

 
We now make the identification ETot = 2E in equations (7) and (8), since they both correspond to 
total energies of the two QSs, calculated independently. Then, 
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When γ  = 1, the two QSs are separated by their equilibrium distance, and then λ = 0 and  
EAQS = EB. Thus, in that case: 
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e

EE
A
NE AQSBA

ad 1
)(2)1(  (10) 

and 
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Substituting (11) into (9): 
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Solving for EAQS(γ), which is the energy of the reference atom AQS, 
 

 )]1()()[1(
2

)( adad
A

BAQS EEe
N
AEE −−+= − γγ λ  (13) 

 

Call Γ the area occupied by an AQS, that is 
AN
A≡Γ . If EB is the energy per atom, then the 

energy per 2D Wigner-Seitz area is: 
 

 )]1()()[1()( 2
1

adad
B
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Γ

= − γγ λ  (14) 
 

The term EB has been parameterized [5] by the Universal Binding Energy Relation (UBER): 
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where 
0a
ax = , is the relative lattice parameter of the reference crystal, Ec is the bulk cohesive 

energy, and: 
 

 )1(8
3 )( 3

1
* −= xaa

B
π  (16) 

 

for BCC structures. Here B is related with the bulk modulus and is known for metals [6,7], and a 
is the lattice parameter. 
 
Ead(γ) in equation (12) has also been parameterized by a UBER in reference [1]: 
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It is important to note that the last expression is valid only for a = a0 since that is the calculation 
performed in reference [1]. We need to extend it to any value of γ and a. 
 
If they had done the same (adhesion) calculation for a crystal with a larger lattice parameter, the 
energy (for a given relative separation) would have been smaller. In particular, in the limiting 
case a → + ∞, the energy of the system tends to zero, for any separation. On the other hand, the 
first principles calculation A(γ) (explicitly written in terms of the relative separation) has a 
minimum for γ = 1, that is for a separation equal to the lattice parameter (or the corresponding 
interplane distance). Finally, we write the excess (referred to the bulk ground state) energy of the 
reference atom AQS as: 
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This expression is built in such a way that the ground state of the system corresponds to γ = 1 
and x = 1, that is an undistorted crystal with the equilibrium lattice parameter. Any 
configurational change, away from that structure, can only increase the energy. 
 
 

Setting the Reference QS (100) 
 

In this section, we build a reference crystal as a BCC (100) QS.  
 
Figure 2 shows the geometry for the BCC (100) QS. We take a “unit cell” in which the atoms 
below the QS are allowed to move under isotropic transformations. The atoms above the QS, can 
support both volume and surface-surface separation transformation. Nearest neighbors to AQS 

are denoted R  and γR . A typical γR  (out of four) is ),1,1(
2

)1,1,1(
2
1)

2
1,1,1( γγ

γ
aaaR =−+= . In 

order to use equation (4) we will compare the gradient terms along the z direction that is, we take 

rn̂ and en̂ both equal to ẑ . We need to evaluate 

42
1

2ˆˆ)cos(
2γ

γ

θ γ

+
=⋅≡ zR . For the neighbors R , we  

 
use the previous expression with the sign changed (because they point opposite to the z 
direction) and with γ = 1. Then the left hand side of equation (3) becomes (there are four 
contributions of each kind): 
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where xaR 02
3= , and

42
1 2

0
γ

γ += xaR . 

 
The left hand side of equation (3) can be derived more simply in a similar way: 
 
 γα

γ
α RpRp eReRDensityEquivalent −− += 44  (20) 

 
 

Application of the Method 
 
We use the method described in the Generalization of UBER section to predict surface energy 
formations of Fe (110) and (111). It is necessary to select the reference surface which has the 
largest density gradient, that is the second term in equation (1). Fortunately, this information is 
available from reference [2]. With the advent in new ab initio techniques such information can be 
available for other surfaces of interest.  
In order to solve equations (3) and (4) we need evaluate the density and gradient terms for the 
real crystals of interest and compare them with expressions given in equations (19) and (20). 
 
1) Fe (110) surface energy formation. 
Iron’s ground state structure is BCC. Figure 3 shows a typical atom. When creating a surface 
(110) passing through that atom, two near neighbor atoms are lost. 
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The contribution to the density from neighboring atoms is 
 
 0

06)110( RpeRDensity α−=  (21) 
 

with 00 2
3 aR = , and a0 the equilibrium lattice parameter. 

To calculate the gradient term for BCC (110), we refer to figure 3. We notice that by symmetry 
the individual gradient terms from neighboring atoms in the (110) plane, when added together, 
cancel. Then the gradient term reduces to the contributions from the two remaining neighbors in 
the first layer below the free surface. By symmetry (they make the same angle with respect to the 
normal to the (110) plane) they both contribute to the sum on the right-hand side of equation (3) 

the same amount. One of those neighbors is at )1,1,1(
2
0aR −= . The direction of the normal to 

(110) is 
2

)110(ˆ =n . Then 
3
2ˆ −=⋅ n

R
R . Since the two atoms contribute the same, the gradient 

term becomes 
 

 01
00 )(

3
22)110( Rp eRpRGradient αα −−−−=  (22) 
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Next we use equations (19), (20), (21) and (22) and substitute in (3) and (4). From that  
we find the values of γ and x that satisfy the equations. Define 

22 )]110([)]110([),( GradientGradientEquivalentDensityDensityEquivalentx −+−=∆ γ  
 
Figure 4 shows a gray level plot of ∆(x,γ) for the parameters of iron. From there a pair of roots is 
identified at x = 0.959 and γ = 1.119. Substituting these values in equation (18) provides  
∆EAQS = 2.49 J/m2, which compares well with 2.247 J/m2 from first principles [2, 3]. 
 
2) Fe (111) surface energy formation.  
Figure 5 shows a typical atom. When creating a surface (111) passing through that atom, four 
near neighbor atoms are lost. 
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The gradient term involves three atoms in the first layer below the surface with 
3
1ˆ −=⋅n

R
R , and 

one atom in the second layer below the surface with 1ˆ −=⋅n
R
R . Then 

 

 00 1
00

1
00 )(2))(1.1

3
13()111( RpRp eRpReRpRGradient αα αα −−−− −−=−+−=  (23) 

 
and 
 
 0

04)111( RpeRDensity α−=  (24) 
 
Next we use equations (19), (20), (23) and (24) and substitute in (3) and (4). From that  
we find the values of γ and x that satisfy the equations. Define as in 1) 

22 )]111([)]111([),( GradientGradientEquivalentDensityDensityEquivalentx −+−=∆ γ   
 
Figure 6 shows a gray level plot of ∆(x,γ) for the parameters of iron. From there a pair of roots is 
identified at x = 1.07006 and γ = 1.19797. Substituting these values in equation (18) provides 
∆EAQS = 2.59J/m2, which also compares well with 2.62 J/m2 from first principles [2, 3]. 

 
 



NASA/TM—2004-212970 11

 
 
Table 1 shows results for Fe low index energy formation calculated by various methods. In 
addition, the table shows the ratios between (110) and (111) surface energies. This number is 
relevant because it has been used in the past as a gauge of the predictive power of a theory. It is 
known [8] that the ratios of surface energies are lower than expected from simple geometrical 
arguments based on surface roughness. This is due to the smoothing of the electron density 
parallel to the surface. Our results for the (111) to (110) energies are within 10% of the ab initio 
results. 

 
Table I.—Comparison of surface energies calculated from various method. 

J/m2 OECT [5] AB INITIO 
[2,3] MEC (This work) 

Fe(110)  1.78 2.25 2.49 
Fe(111) 2.48 2.62 2.59 

)111(
)110(

Fe
Fe  

1.39 1.16 1.04 
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Conclusions 
 
This paper introduced MECT, whose main features are the introduction of a gradient term in the 
density and the possibility for anisotropic deformations of the equivalent lattice. This approach is 
of interest in the calculation of surface energies in particular, and more generally for low 
symmetry geometries in which the gradient of the density is significant and therefore makes an 
important contribution to the total energy. We have applied the method to calculate low index 
surface energy formation of Fe and found an improved agreement with ab initio results. 
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